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Modelling the scaling properties of
human mobility
Chaoming Song1,2†, Tal Koren1,2†, PuWang1,2† and Albert-László Barabási1,2,3*
Individual human trajectories are characterized by fat-tailed distributions of jump sizes and waiting times, suggesting the
relevance of continuous-time random-walk (CTRW) models for human mobility. However, human traces are barely random.
Given the importance of human mobility, from epidemic modelling to traffic prediction and urban planning, we need quantitative
models that can account for the statistical characteristics of individual human trajectories. Here we use empirical data on
human mobility, captured by mobile-phone traces, to show that the predictions of the CTRW models are in systematic conflict
with the empirical results. We introduce two principles that govern human trajectories, allowing us to build a statistically
self-consistent microscopic model for individual human mobility. The model accounts for the empirically observed scaling laws,
but also allows us to analytically predict most of the pertinent scaling exponents.

Uncovering the statistical patterns that characterize the
trajectories humans follow during their daily activity is not
only a major intellectual challenge, but also of importance

for public health1–5, city planning6–8, traffic engineering9,10 and
economic forecasting11. For example, quantifiable models of
human mobility are indispensable for predicting the spread of
biological pathogens1–5 ormobile-phone viruses12.

In the past few years the availability of mobile-phone records,
global-positioning-system data and other data sets capturing as-
pects of human mobility have given a new empirically driven
momentum to the subject. Although the available data sets signifi-
cantly differ in their reach and resolution, the results seem to agree
on a number of quantitative characteristics of human mobility.
For example, both dollar-bill tracking13 and mobile-phone data14
indicate that the aggregated jump-size (1r) and waiting-time (1t )
distributions characterizing human trajectories are fat-tailed, that
is, P(1r)∼ |1r |−1−α and P(1t )∼ |1t |−1−β with 0< α ≤ 2 and
0<β≤ 1, where1r denotes the distances covered by an individual
between consecutive sightings and1t is the time spent by an indi-
vidual at the same location. These findings suggest that human tra-
jectories are best described as Lévy flights or CTRWs, a much stud-
iedmodelling framework in the random-walk community13,15–20.

The purpose of the present Article is to show, using a series
of direct measurements, that human trajectories do follow several
highly reproducible scaling laws. Yet, many of these laws are
either not explained by the CTRW model, or they are in direct
contradiction with the CTRW predictions, indicating the lack of
a modelling framework capable of capturing the basic features of
human mobility. To explain the origin of the observed scaling laws,
we introduce two principles that govern humanmobility, serving as
the starting point of a statistically acceptable microscopic model for
individual humanmotion.We show that themodel can account for
the empirically observed scaling laws and allows us to analytically
predict the pertinent scaling exponents.

Scaling anomalies
We used two data sets to uncover the patterns characterizing
individual mobility. The first data set (D1) captures for a one-year
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period the time-resolved trajectories of three million anonymized
mobile-phone users. Each time a user initiated or received a phone
call the tower that routed the communication was recorded for
billing purposes. Thus, the user’s location was recorded with the
resolution that is determined by the local tower density. The
reception area of a tower varies from as little as a few hundred
metres in metropolitan areas to a few kilometres in rural regions,
controlling our uncertainty about the user’s precise location.
However, as here we focus on the asymptotic scaling properties
of human trajectories, these short distance uncertainties are not
expected to affect our results (see Supplementary Section S2).
The second data set (D2) uses the anonymized location record
of 1,000 users who signed up for a location-based service; thus,
their location was recorded every hour for a two-week period.
As a first step we calculated the displacement at hourly intervals,
finding P(1r)∼ |1r |−1−α with α = 0.55± 0.05 and an expected
cutoff at 1r ∼ 100 km, corresponding to the distance people
could reasonably cover in an hour. We used the D2 data set
to measure P(1t ), where the waiting time 1t is defined as
the time a user spent at one location. We find that P(1t )
follows P(1t ) ∼ |1t |−1−β with β = 0.8 ± 0.1 and a cutoff of
1t = 17 h, probably capturing the typical awake period of an
individual. Taken together, the fat-tailed natures of P(1r) and
P(1t ) suggest that humans follow a CTRW during their daily
mobility. Next we discuss three empirical observations that indicate
that human trajectories follow reproducible scaling laws, but also
illustrate the shortcoming of the CTRW model in capturing the
observed scaling properties.

(A) The number of distinct locations S(t ) visited by a randomly
moving object is expected to follow21–23

S(t )∼ tµ (1)

where µ= 1 for Lévy flights24 and µ= β for CTRW. Interestingly,
our measurements indicate that for humans µ = 0.6± 0.02 (see
Fig. 1a), smaller than the CTRW prediction of β = 0.8± 0.1. The
fact that µ< 1 indicates a slow-down at large timescales, a decreas-
ing tendency of the user to visit previously unvisited locations.
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Figure 1 | Empirical results versus the predictions of the individual-mobility model. a, The number of visited distinct locations S(t) versus time for different
rg groups, indicating that S(t) grows as tµ, with µ≈0.6±0.02 (straight line). The dashed line represents the prediction of CTRW S(t)∼ tβ with β ≈0.8.
b, Zipf’s plot showing the visitation frequency fk of the kth most visited location of a user for different S values. The empirical data is well approximated by
fk ∼ k−ξ , where ξ ≈ 1.2±0.1. c, Time evolution of the MSD (〈1x2

〉
α/2) in a log–log scale for user groups with different radii of gyration rg, where the MSDs

are normalized by their value at t= 1 year. The orange curve represents the analytical prediction for the asymptotic behaviour. The grey line represents the
analytical prediction of CTRW, 〈1x2

〉
α/2
∼ tβ with β =0.8. Inset: The normalized MSD versus S for different rg groups, where the black curve represents

the analytical prediction. d, The number of visited distinct locations S(t) versus time in a log–log plot, as predicted by the individual-mobility model with
different β values (α=0.5, γ =0.2 and ρ=0.1). The straight lines represent the analytical prediction. Inset: The individual-mobility model prediction for
different ρ values (α=0.5, β =0.6 and γ =0.2). e, Zipf’s plot showing the visitation frequency fk in the individual-mobility model with different γ and ρ
values (α=0.5, β =0.6). The straight lines show the analytical prediction. The grey line corresponds to a democratic model in which preferential
attachment is absent. f, The MSD (〈1x2

〉
α/2) versus the number of visited distinct locations S(t) in a log–linear scale. The symbols correspond to

simulations with different ξ values, where ξ =0 corresponds to the democratic model. The solid lines represent the analytical prediction.

(B) Visitation frequency: the probability f of a user to visit
a given location is expected to be asymptotically (t →∞)
uniform everywhere (f ∼ const.) for both Lévy flights and CTRWs.
In contrast, the visitation patterns of humans is rather uneven,
so that the frequency f of the kth most visited location follows
Zipf’s law14

fk ∼ k−ζ (2)

where ζ ≈ 1.2± 0.1 (see Fig. 1b). This suggests that the visitation
frequency distribution follows P(f )∼ f −(1+1/ζ ).

(C)Ultraslowdiffusion: theCTRWmodel predicts that themean
square displacement (MSD) asymptotically follows 〈1x2(t )〉 ∼ t ν
with ν = 2β/α ≈ 3.1. As both P(1r) and P(1t ) have cutoffs,
asymptotically the MSD should converge to a Brownian behaviour
with ν=1. However, this convergence is too slow25 to be relevant in
our observational time frame. Either way, CTRW predicts that the
longer we follow a human trajectory, the further it will drift from its
initial position. Yet, humans have a tendency to return home on a
daily basis, suggesting that simple diffusive processes, which are not
recurrent in two dimensions, do not offer a suitable description of

human mobility. Indeed, our measurements indicate an ultraslow
diffusive process, in which the MSD seems to follow a slower than
logarithmic growth (see Fig. 1c and ref. 14). Such ultraslow growth
of the MSD is rare in diffusion, having been observed before only
in a few disordered systems, from glasses (for example the Sinai
model26) to polymers27 and iteratedmaps28.

On one hand, the findings summarized in A–C indicate that
individual human mobility does follow reproducible scaling laws,
the origins of which remain to be uncovered. Yet, they also
document systematic deviations from the predictions of the Lévy-
flight- or CTRW-based null models. The main purpose of this
Article is to offer a model that not only explains the origin of
anomalies A–C, but also leads to a self-consistent statistical model
of individual human mobility.

Genericmechanisms and individualmobilitymodel
As we build our model, we will take for granted the observations
that the jump-size P(1r) and the waiting-time P(1t ) distributions
characterizing individual human trajectories are heavy-tailed, a
phenomenon addressed by a series of models29–33. Yet, P(1r) and
P(1t ) alone are not sufficient to explain scaling laws A–C. We
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Figure 2 | Schematic description of the individual-mobility model. Starting
at time t from the configuration shown in the left panel, indicating that the
user visited previously S=4 locations with frequency fi that is proportional
to the size of circles drawn at each location, at time t+1t (with1t drawn
from the P(1t) fat-tailed distribution) the user can either visit a new
location at distance1r from his/her present location, where1r is chosen
from the P(1r) fat-tailed distribution (exploration; upper panel), or return
to a previously visited location with probability Pret= 1−ρS−γ , where the
next location will be chosen with probability5i= fi (preferential return;
lower panel).

propose that themain reason for this discrepancy is that two generic
mechanisms, exploration and preferential return, both unique to
human mobility, are missing from the traditional random-walk
(Lévy-flight or CTRW) models. (i) Exploration: random-walk
models assume that the next diffusive step is independent of the
previously visited locations. In contrast, the scaling law (1) indicates
that the tendency to explore additional locations decreases with
time. Indeed, the longer we observe a person’s trajectory, the harder
it is to find locations in the vicinity of their home/workplace that
they have not yet visited. (ii) Preferential return: in contrast with the
random-walk-based models for which the visitation probability is
random and uniform in space, humans show significant propensity
to return to the locations they visited frequently before, such as their
home or workplace.

In what follows we present an individual-mobility model
that incorporates ingredients (1) and (2), showing that they are
sufficient to explain anomalies A–C. The model, intended to
describe the trajectory of an individual, assumes that at time t = 0
the individual is at some preferred location (see Fig. 2). After a
waiting time1t chosen from the P(1t ) distribution, the individual
will change his/her location. We assume that the individual has two
choices. (i) Exploration: with probability

Pnew= ρS−γ (3)

the individual moves to a new location (different from the S
locations he/she visited before). The distance1r that he/she covers
during this exploratory jump is chosen from the P(1r) distribution
and his/her direction is selected to be random. As the individual
moves to this new position, the number of previously visited
locations increases from S to S + 1. (ii) Preferential return:
with the complementary probability Pret= 1−ρS−γ the individual
returns to one of the S previously visited locations. In this case,
the probability 5i to visit location i is chosen to be proportional
to the number of visits the user previously had to that location.
That is, we assume that

5i= fi (4)

an assumption known as preferential attachment or cumulative
advantage in network and social science34–38.

Model predictions
The individual-mobility model has two parameters, 0<ρ ≤ 1 and
γ ≥ 0, both of which control the user’s tendency to explore a new
location during his/her next move versus returning to a previously
visited location. The numerical values of these two parameters will
be determined later from the empirical data.

To explain the origin of the anomaly A, we note that in the
individual-mobility model the probability that an individual moves
to a new location is proportional to S−γ , that is, dS/dn ∝ S−γ ,
predicting S ∼ n1/(1+γ ), where n is the total number of discrete
moves the individual had up to time t . For a fat-tailed waiting-time
distribution P(1t )∼|1t |−1−β the time t scales with the number of
jumps n as t ∼n1/β (Supplementary Section S4A), showing that S(t )
follows (1) with the exponent

µ=β/(1+γ ) (5)

To verify the validity of this prediction for the individual-mobility
model, in Fig. 1d we calculated S(t ) numerically for different
values of β, finding that the asymptotic scaling exponent of S(t )
follows equation (5). Therefore, we predict that µ ≤ β, in line
with the empirical data.

To account for anomaly B we notice that mi, the number of
visits to location i, increases as dmi/dn = 5i(1 − Pnew), where
5i = fi =mi/6imi(n) is the probability to return to the location
i during step n. When γ > 0, in the limit of S(t )→∞ the
probability to explore a new location is negligible comparedwith the
return visits; thus, asymptotically we have dmi/dn=mi/6imi(n).
As 6imi(n) = n, we obtain mi(n) = n/ni, where ni denotes the
jump during which location i was first visited, at which moment
mi(ni)= 1. Owing to preferential return (4), the earlier a location is
visited, the more it is visited later. Thus, the ranking ki for location
i coincides with the order in which it was first visited, that is,
ki = S(ni)∼ n1/(1+γ )i . As the visitation frequency fi is proportional
to mi(n)= n/ni, we have fk ∼ k−ζ with the exponent ζ = 1+γ . In
general, we find (Supplementary Section S4C)

ζ =

{
1+γ , γ > 0
1−ρ, γ = 0 (6)

Note that for γ = 0 and ρ = 1 equation (6) predicts ζ = 0,
indicating, as expected, that the visitation becomes homogeneous
in the CTRW limit.

To test the validity of prediction (6), in Fig. 1e wemeasured fk for
different values of γ andρ in the individual-mobilitymodel, finding
that the numerically observed scaling behaviour is in agreement
with equation (6). The model also suggests that the observed Zipf’s
law is rooted mainly in the preferential return (4). Indeed, if we
calculate fk for a ‘democratic’ model in which5i is independent of
fi (that is, the individual visits the previously visited locations with
the same likelihood), Zipf’s law vanishes (see Fig. 1e).

To understand the origin of anomaly C, we note that the
number of jumps to new locations l relates to the displacement
1r as 1r ∼ l1/α (Supplementary Section S4A), suggesting that
〈1r2〉 ∼ 〈l2/α〉 =

∑n
l=1 l

2/αP(l|S), where P(l|S) is the probability
that the Sth location is l steps away from the starting point of
the individual. Note that l is different from n, as l counts only
moves that result in a jump to some new location, so l ≤ n. P(l|S)
follows the recurrent equation P(l|S) =

∑S
i=1P(l−1|k)f

S
k , where

each term within the sum represents a jump from the kth location
to the Sth location. Here f si is the probability of visitation of
the kth location given that the total number of locations visited
previously is S− 1, and is well approximated by Zipf’s law (2)
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Figure 3 | Testing the hypotheses behind the individual-mobility model. a, The changes in the number of distinct locations1S/〈1S〉 visited by the users
versus the number of distinct locations S visited previously, indicating that Pnew∼1S∼ S−γ with γ =0.21±0.02. The error bars correspond to the
standard error of the mean. b, The probability to return to a previously visited location5 as a function of the previous frequency of visitation f, offering
evidence for preferential attachment5= f. The error bars correspond to the standard error of the mean. c, The probability density function P(ρ) for the
user group, finding that P(ρ), where ρ is the model parameter (see Fig. 2), approximately follows a normal distribution with mean ρ≈0.6.

f sk ≈ (ζ − 1)/(1− S1−ζ )k−ζ . By applying this approximation (see
Supplementary Section S4D), we find〈

1x2〉α/2
∼ log

(
1−S1−ζ

ζ −1

)
+const (7)

which relates the MSD to the number of distinct locations S visited
by the user. In Fig. 1c,f, we plot the MSD versus S for different
values of ζ , finding that equation (7) agrees well with the numerical
results. Furthermore, in the inset of Fig. 1c we plot the prediction
(7) against the empirical data, againwith excellent agreement.

To determine the explicit time dependence of MSD, we use
Equations (1) and (5) to predict three possible scaling regimes for
large t (or S). (a) For ζ <1 (γ =0 and ρ<1), S1−ζ diverges and thus
the MSD grows with time as (log t )2/α . In this regime the visitation
frequency P(f )∼ f −(1+1/ζ ) has an exponent greater than two and
thus the diffusion is dominated by the infrequently visited locations.
(b) For ζ =1, we have (ζ−1)/(1−S1−ζ )= log(S), and thus theMSD
∼ log(log(t ))2/α . (c) For ζ > 1, S1−ζ approaches zero for large S and
thus the MSD is expected to saturate. This is because P(f ) decays
with an exponent that has a value of less than two and thus the
individual’smotion is dominated by his/hermost visited location.

To compare further the individual-mobility model with the
empirical data, we first need to test the validity of hypotheses (i)
and (ii) as formulated by equations (3) and (4). To do this, we used
the D2 data set and measured the rate at which the users visit new
locations (Fig. 3a). We find that Pnew ∝ S−γ with γ = 0.21± 0.02,
a result that not only confirms the validity of hypothesis (i), but
also provides the numerical value of the exponent γ . To test the
validity of hypothesis (ii), in Fig. 3b we plot the probability 5 that
a user returns to a previous location as a function of the previous
visitation frequency f of this location. The plot indicates that5= f ,
confirming the validity of preferential return (4). Furthermore, the
ratio between Pnew and S−γ measures the parameter ρ for each
user, allowing us to plot P(ρ) for our user group, finding that
P(ρ) approximately follows a normal distribution with the mean at
〈ρ〉≈0.6.Note that the scaling properties of the individual-mobility
model do not depend on ρ for γ > 0; thus, although the precise
value of ρ is important to parameterize the model, it does not affect
the scaling laws discussed in A–C.

Finally, to match our model-based prediction with the empirical
data, it is necessary to inspect the relationship between the
exponents characterizing the model and those observed for real
human mobility. In this respect our starting point is the set of three
independently determined exponents α=0.55±0.05, β=0.8±0.1
and γ = 0.21± 0.02. Equation (5) predicts µ = 0.67± 0.07, in

agreement within the error bar with the empirical value µ= 0.6±
0.02 (Fig. 1a). Furthermore, equation (6) predicts ζ = 1.21±0.02,
again in excellent agreement with the empirical value ζ = 1.2±0.1.
Moreover, equations (5) and (6) predict the existence of the scaling
relationship β =µζ between three empirical exponents (valid for
ζ > 1), which is again consistent with the empirical data (Fig. 1b).
Finally, for anomalyC the analytical predictions offer three different
scaling regimes, determined by the value of ζ . The empirical data
indicate the Zipf exponent ζ = 1.2± 0.1, for which we predict a
saturation in the MSD. To understand how the system reaches
saturation, we expand ζ around ζ = 1, finding that in the transient
regime theMSD scales as (loglog(t ))2/α . This prediction is valid only
if S(t )<exp(1/(ζ−1))≈148, which is true for 89%of the users that
have S< 148 over the one-year period. This prediction is consistent
with the empirical data shown in Fig. 1c, documenting a slower than
logarithmic growth of the MSD. Note that in the empirical data
we do not observe the predicted saturation of the MSD, potentially
owing to the finite time frame (1 year) used in the study. To estimate
the saturation time, we extrapolated equation (1) up to S(ts)= 148
for the empirical data, predicting that the saturation can be reached
only after ts= 5 years, beyond our data horizon. Note that the MSD
saturation could also be rooted in the finite size of the country
(that is, the finite number of towers a user can visit). Yet, scaling
arguments (see Supplementary S6) indicate that the saturation time
for S because of the finite size effects is approximately 10,000 years.
Therefore, the saturation of MSD is rooted in the need to return to
the most visited locations, forcing the new locations explored by a
user to be close to the user’s most visited location.

Another key empirical observation is population heterogeneity:
the radius of gyration rg of the trajectory of different individuals is
found to follow a fat-tailed distribution14 (see Fig. 4a). As we show
in Fig. 4c, our model can reproduce this feature as well, indicating
that the fat-tailed P(rg) is a consequence of the inherent fluctuations
present within the model and it is rooted in the P(1r) distribution.
Indeed, in Supplementary Section S5 we show that the tails of
P(rg) and P(1r) are expected to share the same exponent 1+α.
Furthermore, we find that the model reproduces not only the P(rg)
distribution, but the ultraslow growth of rg as well (Fig. 4d), in
agreement with the empirical data (Fig. 4b).

It is important to note that in contrast with the traditional
random-walk, Lévy-flight or CTRW models, our model is dy-
namically quenched. That is, after an individual explores a new
location, he/she will have an increasing tendency to return to it
in the future, generating a recurrent and relatively stable mobility
pattern for each individual. In principle one could also consider a
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model that assigns a quenched visitation variable to each site. Our
approach not only avoids the need to parameterize such a model,
but also achieves the trajectory selection dynamically, through its
self-quenching character.

We also note that themodel is designed to capture the long-term
spatial and temporal scaling patterns; thus, in its present from it
does not reproduce the short-term temporal order and correlations
potentially present in individual mobility. Our choice to focus the
asymptotic properties is driven not only by theoretical arguments
(we aim to reproduce the universal and not the transient patterns),
but also by practical considerations: many human-mobility-driven
processes, from epidemic spreading to city planning, are driven
by the asymptotic characteristics of human mobility. To achieve a
better short-range temporal fidelity, we need to incorporate the pe-
riodic modulations that are known to characterize human mobility
(there is a 24 hour and 7 day periodicity in humanmobility; individ-
uals are less likely to change locations during the night and are quite
mobile in the morning and late afternoon, see Supplementary S7)

as well potential correlations in spatial mobility (that is, if location
B is between locations A and C in space, the likely order of visitation
will be A→ B→ C or C→ B→ A). These correlations further
constrain the human trajectories, being partly responsible for the
high degree of predictability characterizing individual mobility
patterns39. Finally, we note that the dynamical quenching and the
recurrent behaviour are unique to human trajectories, and do not
restrict banknote diffusion or foraging behaviour13,33,40. As such,
our model represents an improvement over the CTRW/Lévy-flight
models, as it is adapted to capture the specifics of human mobility.
By reproducing the basic scaling laws characterizing human
trajectories, the present model offers a conceptual framework that
has the flexibility to absorb future extensions, potentially improving
the temporal fidelity of its short-term dynamics as well.

Methods
MSD. Owing to the significant population heterogeneity of P(rg), MSD averaged
over all users diverges and thus is ill-defined. We therefore grouped users on
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the basis of their rg, guaranteeing that the MSDs defined within groups do not
diverge. We calibrate t = 0 to correspond to the moment when an individual leaves
his/her most visited location. To compare the empirical measure with the analytical
prediction (7) directly, the displacement is counted only when the individual
explores a new site. This methodology does not affect the scaling behaviour of
regular random-walk-based models.

Number of distinct locations (S). Similar to the MSD, S(t ) is the average over
different rg groups. Given the large population in our data set, the standard
error of the mean is quite small and the error bar in Fig. 1a is smaller than
the symbols. The error bar in µ mainly comes from fitting of the power law,
where the correlation coefficient r = 0.998 and the p value associated with
the fit is less than 10−6.

Received 4 May 2010; accepted 26 July 2010; published online
12 September 2010
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