[1]
L. Burks, M. Miller, and R. Zadeh, “Rapid estimate of ground shaking intensity by combining simple earthquake characteristics with tweets,” in 10th US nat. Conf. Earthquake eng., front. Earthquake eng., anchorage, AK, USA, jul. 21Y25, 2014.
[2]
Y. Kryvasheyeu
et al.,
“Rapid assessment of disaster damage using social media activity,” Science Advances, vol. 2, no. 3, p. e1500779, Mar. 2016, doi:
10.1126/sciadv.1500779.
[3]
J. Cranshaw, R. Schwartz, J. Hong, and N. Sadeh,
“The Livehoods Project: Utilizing Social Media to Understand the Dynamics of a City,” Proceedings of the International AAAI Conference on Web and Social Media, vol. 6, no. 1, pp. 58–65, 2012, doi:
10.1609/icwsm.v6i1.14278.
[4]
A. J. Schwartz, P. S. Dodds, J. P. M. O’Neil-Dunne, T. H. Ricketts, and C. M. Danforth,
“Gauging the happiness benefit of US urban parks through Twitter,” PLOS ONE, vol. 17, no. 3, p. e0261056, Mar. 2022, doi:
10.1371/journal.pone.0261056.
[6]
X. Dong
et al.,
“Segregated interactions in urban and online space,” EPJ Data Science, vol. 9, no. 1, pp. 1–22, Dec. 2020, doi:
10.1140/epjds/s13688-020-00238-7.
[7]
E. L. Glaeser, H. Kim, and M. Luca, “Nowcasting the local economy: Using yelp data to measure economic activity,” National Bureau of Economic Research, 2017.
[8]
E. Cho, S. A. Myers, and J. Leskovec,
“Friendship and mobility: User movement in location-based social networks,” in
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, in
KDD ’11. New York, NY, USA: Association for Computing Machinery, Aug. 2011, pp. 1082–1090. doi:
10.1145/2020408.2020579.
[9]
M. Kosinski, D. Stillwell, and T. Graepel,
“Private traits and attributes are predictable from digital records of human behavior,” Proceedings of the National Academy of Sciences, vol. 110, no. 15, pp. 5802–5805, Apr. 2013, doi:
10.1073/pnas.1218772110.
[10]
J. P. Bagrow, X. Liu, and L. Mitchell,
“Information flow reveals prediction limits in online social activity,” Nature Human Behaviour, vol. 3, no. 2, pp. 122–128, Feb. 2019, doi:
10.1038/s41562-018-0510-5.
[11]
J. Bao, Y. Zheng, D. Wilkie, and M. Mokbel,
“Recommendations in location-based social networks: A survey,” GeoInformatica, vol. 19, no. 3, pp. 525–565, Jul. 2015, doi:
10.1007/s10707-014-0220-8.
[12]
P. Martí, L. Serrano-Estrada, and A. Nolasco-Cirugeda,
“Social Media data: Challenges, opportunities and limitations in urban studies,” Computers, Environment and Urban Systems, vol. 74, pp. 161–174, Mar. 2019, doi:
10.1016/j.compenvurbsys.2018.11.001.
[13]
M. J. Salganik, Bit by bit: Social research in the digital age. Princeton University Press, 2019.
Social Media Data